
An introduction to ISL

for them not too shy (WIP Update 4)

Table of Content

Foreword...4
Introduction...5
Initial stages..6
The Property Editor: a quick overview...7
The ISL debugger..10
Gray is boring..11
Drawing noise with a ruler..13
A note on colour and functions...14
Scaling the ruler..16
Params...17

Note on params edition...19
Shared material data..20
Effective control..21
Welcome into a new dimension..22
Dimension the Third...23

Foreword

The purpose of this booklet is to lead the novice, supposedly impressed by the notion of coding,
into a guided first contact with the Indigo Shading Language (ISL).

As such, the reader is expected to have been through UV texturing and is now willing to use a
different method to define materials in Indigo.

From there, the tutorial will try to conceal the technicity that ISL may involve by proceeding from
one illustrated step to another. Sometimes in an imaged language, often at the price of technical
accuracy. Theoretical insights will happen when required.

Text in coloured fonts are WIP artefacts.

Introduction

We will progressively be building the simplest 2d shader, then add to it a couple of UI controls.

A 2d shader, such as a procedural noise, will cover a surface like a texture does: according to the
surface UV coordinates1, as they were projected onto the mesh. Therefore, all 2d shaders are
functions of the U and V grid.

Start Indigo (Indigo RT all the same) standalone application.

1. These coordinates will be used by Indigo in order to locate the point at wich the light response must be evaluated.

Initial stages

Open the File menu and create a New Material.

Make sure that the Property Editor is visible. It is otherwise called from the Window menu. Also,
from a contextual menu available by right-clicking on the title of another dockable panel.

My own working setup looks like this:

The only panel that we will be using is the Property Editor.

The Property Editor: a quick overview

The Property Editor is the Indigo object editor.

Give the material a Name. We will then have a look at the Property Editor layout titled General.

For a few versions, new materials in Indigo standalone come with a shader for colour. On
semantics: colour is a material parameter (aka: channel, attribute), and shader is a type for a
parameter. In other words one can say that the current type of the colour parameter is: shader.

Click on the checker icon on the right of the pulldown menu in order to open the editor fitting with
the current parameter type:

Now look at the text field only:

 Ask yourself one thing: does it look like scary, knowing that you don't have to be concerned by the

The colour shader editor.

The general section of the Property Editor. Material
types other than diffuse may expose more controls.

first line ? I mean, at all.

If yes, change now the bump parameter type to shader and let's have a look at this one. Ignore the
first line, ignore the dummy control on the left and don't kid me...

Granted, the result is unimpressive but it's a valid shader code already. Mark - my - words:

A single floating point number applied at a specific UV coordinate makes a procedural bump
shader, and you can make it happen.

Thank you for your attention.

Right, turn off the bump mapping evaluation for now by ticking off the leftmost checkbox in the
bump parameter controls.

We will be using the colour parameter for a better visual feedback while laying out the basics. Go
back to its shader editor and play with the value within the parenthesis in the second line.

editing tip: put the value alone on a new line, with the last bracket below. Editing the value is more
practicable this way.

The bump shader boils down to a single floating point value.

Tweaking the default value of the colour shader.

The ISL debugger

While editing the colour shader value, you may have noticed that Indigo would reject the code
between two valid inputs. This is signified in two ways: the shader has not reflected any change
compared with the last valid input, and there is an explicit report overlay in the upper render panel
region.

You will eventually get used with the different types of errors identified, at first confusing the ISL
debugger is of a great help nonetheless.

Be not troubled though, the ISL debugger happening while editing a shader code is something
casual.

By the way, don't assume that fehlehbehleh can not make it into ISL. It can.

You know when you did something wrong, and generally what it is.

Gray is boring

And there is more where it came from ! How about gradients now ?

Remember when I said that a shader was a function of, notably, the U coordinate and that it sounded
scary already ?

Well, let's expose the U coordinate of the material test sphere with no further discussion:

texi() is one name of the U coordinate in Indigo Shading Language, texj() goes to the V coordinate.
Both apply only to the first UV set, as the shortcuts (aliases) they are.

The U coordinate exposed.

Now can you see the damn UVs oooooh boooy... oh sorry, my memories with ISL...

In this chapter, we have exposed the data that Indigo will be using to lay out 2d shaders.

The V coordinate of the test scene geometry.

Drawing noise with a ruler

Thanks to computers we don't have to. Give one a ruler and it will draw the noise out of it. And
guess what: texi() and texj() make two rulers, we have got choice for this part coming.

So, the noise takes a ruler and the ruler is, say, texi(). Repeat after me: "noise() takes a ruler and the
ruler is texi()". Goood.

You have been hypnotized.

A note on colour and functions

It is a property of many functions to oscillate between minus one and one. It is however a property
of colour to be bound between zero and one. Specially, these colour attributed to an albedo, ask
wikipedia. This is easy to understand: no diffuse material can be darker than black, nor lighter than
white. In fact, a sheet of standard white paper has a measured albedo of 0,85; you should consider
this as a hard limit for an albedo value.

This property of the noise() function, added to the one of an albedo explains why a good half of our
material is pitch black: it is the domain of the noise() function that equals, or is below zero.

This is easily adressed by replacing noise() with noise01(), a variant having its output scaled in
order to fit entirely between zero and one.... hence the name !

Noise functions are generally oscillating between minus one and one.

noise01() is bringing the entire output of noise() into the albedo domain.

Scaling the ruler

Now that we can see something (do we) let's see it even better. If you are an artist I will not be
teaching to you that for this purpose, one need to step back off the subject.

In computer shading, one would make the ruler smaller so more of them rulers could fit along the
surface. If I multiply the readings of texi() (the ruler) by two I will reach 1.0 twice as fast over the
surface, and such a second ruler would fit along.

Let's multiply texi() by two. No wait, it's not conclusive. Make it twelve, ie 12 dot 0. The terminal
number is optional, but the period is not.

Yes, yes, yeees it's happening. You are getting in control, and this achievement will be sanctioned.

The value DOT something, because 12 and 12.0 are not of the same nature to Indigo.

Params

Scaling UV readings as we just did is a primary feature for a procedural shader. Unless you know
exactly the dimensions of the geometry it will be applied to, you want to make this property readily
available for tweaking the shader, in order to have it fit under varied sceneries.

This is the purpose of params. Not to be confused with material parameters as introduced
previously, a param is a custom shader parameter, wich translates into a shader editor control.

You most certainly noticed the default params already there. While we could use the first of them in
order to scale the vec3() colour output for instance, we will rather go through creating the one
adressing our former concern, with an adapted output range.

Then should you be able to scale the vec3() term as suggested. All by yourself, that would be a good
exercise.

Delete each param from the colour shader editor by clicking on its leftmost x icon, then confirming
the param deletion. Indicatively, you should find yourself with an editor as seen in the image titled
"The V coordinate of the test scene geometry". link

The default params in the colour shader editor.
They could have been deleted from the start.

Click then on the Add Shared Parameter button in order to summon the window for param
creation.

The param creation window is featuring several captions that define the param to be created: Type,
Name, Description, Minimum Value and Maximum Value. All are self-explanatory but perhaps
the first one; data types concerns though will be insistently eluded during this introduction to ISL.

Change the param creation options as shown below:

param creation options setup for Scale.

The type must be Real for the operation being (noise01() delivers that data type).
The name will be Scale so we can stay sync'ed during the tutorial. Scale is not a keyword in itself.
The description is for your interest. It is a good practice to provide one.
The min and max values are at your discretion.

Click OK to create the Scale param.

At this point, all you will get is a new fancy way to restart the render. Not. Bad.

Note on params edition
Shader parameters can not be edited at this time, they must be replaced when needed. Several
params with the same name may coexist; Indigo would currently ignore subsequent definitions.

Shared material data
It was not mandatory to pick a shared param to create, but UV scaling is that kind of effect that one
wants often applied simultaneously to several parameters of a material. For instance, in order to
maintain a correlation between its colour and bump parameters.

Ordinary params are visible only for the current shader parameter, while shared params are
available to all shaders of a material; they will appear in each of its shader editors.

There exists also a mean to define shared ISL functions, currently by hand editing an Indigo file
(IGM or IGS).

Effective control

It is finally time to bind the UI control to the ISL shader. While not obvious, the convention is easy
to remember.

ISL will aknowledge the param with the user defined name Scale as paramScale(). This is why it is
a good practice to give params a name with a capital first letter.

paramScale() will act as a float value in ISL, because its type was defined as real (both are
synonyms). The parenthesis signify that ISL will interpret the param as a function, entity wich will
be covered in a different work2.

To arms, now.

Try now to multiply the vec3() term (the whole shader) with a new real param named Gain, ranging
from zero to one. This exercise is optional.

2. Basically, a function is an autonomous portion of code that can be invoked in other portions in order to provide them
with a certain data through a predefined process, without having to rewrite the whole thing again and again each time
that this processed data is needed.

Skills can get you that.

Welcome into a new dimension

Strokes across a surface. Even though jittered, you probably had a better idea of a noise function in
shading.

Indeed, it was convenient to call texi() or texj() "rulers" because each is one-dimensional. Together,
they are the constituents of the UV entity3.

ISL refers to the first UV set of a geometry as tex()4.

Now, our notion of a ruler is becoming more abstract. Let's stick to the naming conventions and call
it UV coordinates, or UV set alike.

image: scalable 2d noise at once.

3. Such a composite entity is sometimes referred to as construct.
4. tex() is an alias for getTexCoords(0). The integer between the parenthesis designate the number of the UV set of
choice for the geometry, starting from zero.

Dimension the Third

